Kinetically locked-in colloidal transport in an array of optical tweezers.

نویسندگان

  • Pamela T Korda
  • Michael B Taylor
  • David G Grier
چکیده

We describe measurements of colloidal transport through arrays of micrometer-scale potential wells created with holographic optical tweezers. Varying the orientation of the trap array relative to the external driving force results in a hierarchy of lock-in transitions analogous to symmetry-selecting processes in a wide variety of systems. Focusing on colloid as a model system provides the first opportunity to observe the microscopic mechanisms of kinetic lock-in transitions and reveals a new class of statistically locked-in states. This particular realization also has immediate applications for continuously fractionating particles, biological cells, and macromolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloidal transport through optical tweezer arrays.

Viscously damped particles driven past an evenly spaced array of potential energy wells or barriers may become kinetically locked in to the array, or else may escape from the array. The transition between locked-in and free-running states has been predicted to depend sensitively on the ratio between the particles' size and the separation between wells. This prediction is confirmed by measuremen...

متن کامل

Sorting mesoscopic objects with periodic potential landscapes: optical fractionation.

Viscously damped objects driven through a periodically modulated potential energy landscape can become kinetically locked in to commensurate directions through the landscape, and thus can be deflected away from the driving direction. We demonstrate that the threshold for an object to become kinetically locked in to an array can depend exceptionally strongly on its size. When implemented with an...

متن کامل

Multidimensional optical fractionation with holographic verification

The trajectories of colloidal particles driven through a periodic potential energy landscape can become kinetically locked in to directions dictated by the landscape’s symmetries. When the landscape is realized with forces exerted by a structured light field, the path a given particle follows has been predicted to depend exquisitely sensitively on such properties as the particle’s size and refr...

متن کامل

Evolution of a Colloidal Critical State in an Optical Pinning Potential Landscape

As a step toward isolating the influence of a modulated substrate potential on dynamics and phase transitions in two dimensions, we have studied the behavior of a monolayer of colloidal spheres driven by hydrodynamic forces onto a large array of holographic optical tweezers. These optical traps constitute an effective substrate potential whose symmetry, separation and depth of modulation all ca...

متن کامل

Prismatic optical fractionation

Brownian particles drifting through a periodically structured force landscape can become entrained by the landscape’s symmetries. What direction a particular particle takes can depend strongly on subtle variations in its physical properties. Consequently, a homogeneously structured force field can sort a mixture of particles into spatially separated fractions, much as an optical prism refracts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 89 12  شماره 

صفحات  -

تاریخ انتشار 2002